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Abstract
Factorization of n×n unitary matrices as a product of n diagonal phase matrices
interlaced with n − 1 orthogonal matrices, each one generated by a real vector,
is provided. As a byproduct an explicit form for the Weyl factorization of
unitary matrices is given. The results can be used at the parametrization of
complex Hadamard matrices and in finding the Laplace–Beltrami operators on
unitary groups.

PACS number: 02.10.Sp

1. Introduction

Matrix factorization is a live subject of linear algebra. It seems that no general theory is
yet available although many results appear almost every day. However, our goal will not be
so ambitious to present a general theory of matrix factorizations but to tackle the problem
of factorization of unitary matrices. Unitary matrices are a first hand tool in solving many
problems in mathematical and theoretical physics and the diversity of the problems necessitates
to keep improving it. In fact, the matrix factorization is closely related to the parametrization
of unitary matrices, and the classical result by Murnagham (1962) on parametrization of the
n-dimensional unitary group U(n) is the following: an arbitrary n × n unitary matrix is
the product of a diagonal matrix containing n phases and n(n − 1)/2 matrices whose main
building block has the form

U =
(

cos θ −sin θ e−iϕ

sin θ eiϕ cos θ

)
. (1)

The parameters entering the parametrization are n(n − 1)/2 angles θi and n(n + 1)/2
phases ϕi .

A selection of a specific set of angles and/or phases has no theoretical significance because
all the choices are mathematically equivalent; however, a clever choice may shed some light
on important qualitative issues. Because in any group the product of two arbitrary elements
is again an element of the group, there is a freedom in choosing the ‘building’ blocks to be
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used in a definite application. In some sense the application we have in view imposes the
factorization.

To our knowledge one of the first such problems is raised by Reck et al (1994), who
describe an experimental realization of any discrete unitary operator. Such devices will find
practical applications in quantum cryptography and in quantum teleportation. Starting from
Murnagham parametrization they show that any n × n unitary matrix An can be written as a
product An = BnCn−1 where Bn ∈ U(n) is at its turn a product of n − 1 unitary matrices
containing each one a block of the form (1) and Cn−1 is a U(n − 1) matrix. Consequently,
the experimental realization of an n × n unitary operator is reduced to the realization of two
unitary operators one of which is a little bit simpler. The experimental realization of a U(3)

matrix, sketched in their figure 2, suggests that it would be preferable that phases entering the
parametrization should be factored out, the device becoming simpler and the phase shifters,
their terminology for phases, being placed at the input and output ports, respectively.

A mixing of the Murnagham factorization and that of Reck et al is proposed by
Rowe et al (1999) in their study on the representations of Weyl group and Wigner functions
for SU(3). The last parametrization is also used by Nemoto (2000) in his attempt to develop
generalized coherent states for SU(n) systems.

Another kind of factorization is suggested by Chaturvedi and Mukunda (2001), whose
aim is to obtain a more ‘suitable’ parametrization of the Cabibbo–Kobayashi–Maskawamatrix
appearing in particle theory. Although the proposed forms for n = 3, 4 are awfully complicated
by comparison with other parametrizations existing in the literature, and for this reason this
factorization cannot be easily extended to cases n � 5, the paper contains a novel idea namely
that an SU(n) matrix can be parametrized by a sequence of n−1 complex vectors of dimensions
2, 3, . . . , n. Fortunately, there is an alternative simpler construction as it may be inferred from
the construction of an SU(3) matrix as a product of two matrices, each of them generated by
three- and two-dimensional complex vectors, respectively. (Mathur and Sen 2001).

The aim of this paper is to elaborate this alternative construction in order to obtain a
factorization of n × n unitary matrices as a product of n diagonal matrices containing the
phases and n − 1 orthogonal matrices, each of them generated by real vectors of dimensions
2, 3, . . . , n. The main result of the paper is the following.

Any element An ∈ U(n) can be factored into an ordered product of 2n − 1 matrices of
the following form

An = dnOnd
1
n−1O1

n−1 · · · dn−2
2 On−1

2 dn−1
1

where dk
n−k are diagonal phase matrices and Ok

n−k are orthogonal matrices whose columns
are generated by real (n − k)-dimensional unit vectors.

The idea behind such a factorization is to look for a variety on which U(n) acts transitively
which in our case is the complex unit sphere of Cn. The transitivity property allows the
factorization of an arbitrary element An ∈ U(n) under the form An = BnCn−1 where Cn−1 is
an arbitrary element of U(n−1) and Bn is a special element of U(n) which has the remarkable
property that it is parametrized by an arbitrary point of the complex variety. The second step
of the algorithm is to provide an explicit construction of this special element of U(n). In
our case the construction reduces to the completion of a unitary matrix whose first column
is explicitly known, without introducing supplementary parameters. For doing that we used
some elementary facts from contraction theory and spectral theory of symmetric operators.

As a byproduct of our factorization, we obtain the Weyl form (Weyl 1946) of a unitary
matrix W = w∗dw, where w is a unitary matrix, w∗ is its adjoint and d is a diagonal matrix
containing n phases. The Weyl factorization was the key ingredient in finding the ‘radial’
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part of the Laplace–Beltrami operator on U(n) and SU(n) (Wadia 1980, Menotti and Onofri
1981) and this explicit form could help in finding completely the Laplace–Beltrami operator
on unitary groups. The applications we have in view concern the construction of Laplace–
Beltrami operators for unitary groups and the parametrization of complex Hadamard matrices.
We recall that one does not know the Laplacian even for the SU(3) group, the only partial
result being that obtained by Bég and Ruegg (1965). The parametrization of the complex
Hadamard matrices is very important in the quantum theory of information (Werner 2000), the
complex Hadamard matrices being those unitary matrices whose entries moduli equal 1/

√
n.

The paper is organized as follows: in section 2 we derive a factorization of n × n

unitary matrices as a product of n diagonal matrices interlaced with n− 1 orthogonal matrices
generated by real vectors of dimensions 2, 3, . . . , n − 1. The explicit form of the orthogonal
matrices entering the factorization is found in section 3 and the paper ends with concluding
remarks.

2. Factorization of unitary matrices

The unitary group U(n) is the group of automorphisms of the Hilbert space (Cn, 〈·|·〉) where
〈·|·〉 is the Hermitian scalar product 〈x|y〉 = ∑i=n

i=1 xiyi . If An ∈ U(n) by A∗
n, we will denote

the adjoint matrix and then A∗
nAn = In, where In is the n × n unit matrix. It follows that

det An = eiϕ , where ϕ is a phase, and dimR U(n) = n2.
First of all we want to introduce some notation that will be useful in the following. The

product of two unitary matrices being again a unitary matrix, it follows that the multiplication
of a row or a column by an arbitrary phase does not affect the unitarity property. Indeed,
the multiplication of the jth row by eiϕj is equivalent to the left multiplication by a diagonal
matrix whose all diagonal entries but the jth ones are equal to unity and ajj = eiϕj . The first
building blocks appearing in the factorization of unitary matrices are diagonal matrices written
in the form dn = (eiϕ1, . . . , eiϕn) with ϕj ∈ [0, 2π), j = 1, . . . , n, arbitrary phases, and all
off-diagonal entries zero. We also introduce the notation dn−k

k = (1n−k, eiψ1 , . . . , eiψk ), k < n,
where 1n−k means that the first (n−k) diagonal entries are equal to unity, i.e. it can be obtained
from dn by making the first n − k phases zero. Multiplying at left by dn, an arbitrary unitary
matrix, the first row will be multiplied by eiϕ1 , the second by eiϕ2 , etc and the last one by eiϕn .
Multiplying at right by dn−k

k the first n − k columns remain unmodified and the other ones
are multiplied by eiψ1 , . . . , eiψk , respectively. A consequence of this property is the following:
the phases of the elements of an arbitrary row and/or column can be taken zero or π and a
convenient choice is to take the elements of first column non-negative numbers and those of
the first row real numbers. We can also interchange any two columns (rows) and the new
matrix is again unitary. This follows from the equivalence between the permutation of the ith
and jth rows (columns) with the left (right) multiplication by the unitary matrix Pij whose all
diagonal entries but aii and ajj are equal to unity, aii = ajj = 0, aij = aji = 1, i �= j , and all
the other entries vanish. In conclusion, an arbitrary An ∈ U(n) can be written as a product of
two matrices, the first one diagonal, in the form

An = dnÃn (2)

where Ãn is a matrix with the first column elements non-negative numbers.
Other building blocks that will appear in factorization of Ãn are the two-dimensional

rotations which operate in the i, i + 1 plane of the form
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Ji,i+1 =




Ii−1 0 0

0
cos θi −sin θi

sin θi cos θi

0

0 0 In−i−1


 i = 1, . . . , n − 1 (3)

where Ik denotes the k-dimensional unit matrix.
Let v be the vector v = (1, 0, . . . , 0)t ∈ S2n−1 ∈ Cn where t denotes the transpose and

S2n−1 is the unit sphere of the Hilbert space Cn whose real dimension is 2n − 1. By applying
An ∈ U(n) to the vector v, we find

Anv = a = (a11 . . . an1)
t

where a ∈ S2n−1 because An is unitary. The vector a is completely determined by the first
column of the matrix An. Conversely, given an arbitrary vector of the unit sphere w ∈ S2n−1

this point determines a unique first row of a unitary matrix which maps w to the vector v.
Therefore, U(n) acts transitively on S2n−1. The subgroup of U(n) which leaves v invariant is
U(n − 1) on the last n − 1 dimensions such that

S2n−1 = coset space U(n)/U(n − 1).

Thus, apart from global matching problems or ambiguities on a subset of measure zero,
we expect that any element of U(n) should be uniquely specified by a pair of a vector b ∈ S2n−1

and an arbitrary element of U(n − 1). Thus, we are looking for a factorization of an arbitrary
element An ∈ U(n) in the form

An = Bn

(
1 0

0 An−1

)
(4)

where Bn ∈ U(n) is a unitary matrix whose first column is uniquely defined by a vector
b ∈ S2n−1, but the other columns for the moment are still arbitrary and An−1 is an arbitrary
element of U(n − 1). For the SU(3) group such a factorization was obtained recently
(Chaturvedi and Mukunda 2001, Mathur and Sen 2001). Iterating the previous equation we
arrive at the conclusion that an element of U(n) can be written as a product of n unitary
matrices

An = Bn · B1
n−1 · · ·Bn−1

1 (5)

where

Bk
n−k =

(
Ik 0
0 Bn−k

)
.

Bk, k = 1, . . . , n − 1, are k × k unitary matrices whose first column is generated by vectors
bk ∈ S2k−1; for example, Bn−1

1 is the diagonal matrix (1, . . . , 1, eiϕn(n+1) ).
The still arbitrary columns of Bk will be chosen in such a way that we should obtain a

simple form for the matrices Bn−k
k , and we require that Bk should be completely specified by

the parameters entering the vector bk and nothing else. In the following, we show that such a
parametrization does exist and then An ∈ Un in (5) will be written as a product of n unitary
matrices each one parametrized by 2k −1, k = 1, . . . , n, real parameters such that the number
of independent parameters entering An will be 1 + 3 + · · · + 2n − 1 = n2 as it should be.

In other words, our problem is to complete an n×n matrix whose first column is given by
a vector bn ∈ S2n−1 to a unitary matrix and we have to do it without introducing supplementary
parameters. For n = 3 this was found by us (Diţă 1994) in an other context and here we give
the construction for arbitrary n.

If we take into account the property (2), the problem simplifies a little bit since then

Bn = dnB̃n
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where the first column of B̃n has non-negative entries. Denoting this column by v1 we will
use the parametrization

v1 = (cos θ1, cos θ2 sin θ1, . . . , sin θ1 . . . sin θn−1)
t (6)

where θi ∈ [0, π/2], i = 1, . . . , n − 1, are the angles. Thus, Bn will be parametrized by n
phases and n − 1 angles. According to the above factorization, B̃n is nothing else than the
orthogonal matrix generated by the vector v1. Thus, with no loss of generality Bn = dnOn

with On ∈ SO(n). In this way the factorization of An will be

An = dnOnd
1
n−1O1

n−1 · · · dn−2
2 On−1

2 dn−1
1

where Ok
n−k has the same structure as Bk

n−k , i.e.

Ok
n−k =

(
Ik 0
0 On−k

)
.

In conclusion the factorization of unitary matrices reduces to the parametrization of orthogonal
matrices generated by unit vectors of the real sphere of dimensions 2, . . . , n and in the next
section we show how to do it.

3. Parametrization of orthogonal matrices On

For the explicit construction of the orthogonal matrix On we need some notions from
contraction theory. An operator T applying the Hilbert space H in the Hilbert space H′

is a contraction if for any v ∈ H, ‖T v‖H′ � ‖v‖H, i.e. ‖T ‖ � 1 (Sz-Nagy and Foias 1967).
For any contraction we have T ∗T � IH′ and T T ∗ � IH and the defect operators

DT = (IH − T ∗T )1/2 DT ∗ = (IH′ − T T ∗)1/2

are Hermitian operators in H and H′, respectively. They have the property

T DT = DT ∗T T ∗DT ∗ = DT T ∗. (7)

In the following we are interested in a contraction of a special form, namely that generated
by an n-dimensional real vector b ∈ Rn, i.e. T = (b1, . . . , bn)

t , where bi are the coordinates
of b; its norm is ‖T ‖ = (b, b) and T will be a contraction iff (b, b) � 1, i.e. if b is a point
within the unit ball of Rn. If (b, b) = 1, that is the case we are interested in, T is an isometry,
i.e.

T ∗T = 1 and DT = 0

and in this case DT ∗ is an orthogonal projection. A direct calculation shows that
det

(
λIn − D2

T ∗
) = λ(λ − 1)n−1 such that the eigenvalue λ = 0 is simple and the eigenvalue

λ = 1 is degenerated. From the first relation (7) we have

DT ∗T = DT ∗b = T DT = bDT = 0

i.e. b is the eigenvector of DT ∗ which corresponds to the λ = 0 eigenvalue.
The orthogonal matrix On which brings the operator DT ∗ to a diagonal form

Ot
nDT ∗On =

(
0 0
0 In−1

)
is the orthogonal matrix we are looking for because it is generated by an arbitrary n-dimensional
real vector of unit norm. The multiplicity of the λ = 1 eigenvalue being n − 1, the form of
the matrix On is not uniquely defined. In this situation we have to make a choice between
the possible bases. Our criterion was that the resulting orthogonal matrix On should have as
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many as possible vanishing entries. We found such a matrix that has (n − 1)(n − 2)/2 zero
entries in the upper right corner and the result is expressed by the following lemma.

Lemma 1. The orthonormalized eigenvectors of the eigenvalue problem

DT ∗vk = λkvk k = 1, . . . , n

are the columns of the orthogonal matrix On ∈ SO(n) and are generated by the vector v1, as
in (6), as

v1 =




cos θ1

sin θ1 cos θ2

·
·
·

sin θ1 · · · sin θn−1




and

vk+1 = d

dθk

v1(θ1 = · · · = θk−1 = π/2) k = 1, . . . , n − 1

where in the above formula one calculates first the derivative and afterwards the restriction
to π/2.

Proof. Elementary calculations show that (vi, vj ) = δij , i, j = 1, . . . , n, and thus vk are
linearly independent. Because the multiplicity of the zero eigenvalue is unity, it follows that
vk, k = 2, . . . , n, are orthogonal eigenvectors corresponding to the λ = 1 eigenvalue. �

The orthogonal matrices On

(
Ok

n−k

)
can be written as products involving only the two-

dimensional rotations defined by (3). Thus we have.

Lemma 2. The orthogonal matrices On

(
Ok

n−k

)
at their turn can be factored into a product of

n − 1 (n − k − 1) matrices of the form Ji,i+1; e.g., we have

On = Jn−1,nJn−2,n−1 · · · J1,2 (8)

where Ji,i+1 are n × n rotations introduced by equation (3).

Putting together all the preceding information one obtains the following result.

Theorem 1. Any element An ∈ U(n) can be factored into an ordered product of 2n − 1
matrices of the form

An = dnOnd
1
n−1O1

n−1 · · · dn−2
2 On−1

2 dn−1
1 (9)

where dk
n−k are diagonal phase matrices and Ok

n−k are orthogonal matrices whose columns
are generated by real (n − k)-dimensional unit vectors according to lemma 1. By using the
factorization (8) the above formula can be written as a product of n diagonal phase matrices
and n(n − 1)/2 two-dimensional rotations Jk,k+1.

The condition
∑n(n+1)/2

i=1 ϕi = 0, imposed on ϕi the arbitrary phases entering the
parametrization of An, gives the factorization of SU(n) matrices.

If wn = Ond
1
n−1O1

n−1 · · · dn−2
2 On−1

2 dn−1
1 = Ond

1
n−1wn−1, then

Wn = w∗
ndnwn (10)

is one (of the many possible) Weyl representation of unitary matrices.
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If all the phases entering An are zero or π, ϕi = 0, π, i = 1, . . . , n(n + 1)/2, one gets
the factorization of the rotation group O(n); the factorization of the special group SO(n) is
obtained when an even number of phases take the value π .

Remark 1. The above factorization is not unique and we propose it as the standard (and
simplest) representation. Equivalent factorizations (parametrizations) can be obtained by
inserting matrices such as Pij as factors in formulae (8)–(10) since the number of parameters
remains the same and only the final form of the matrices is different. As concerns equation (10)
we made the choice that leads to the simplest form for the matrix elements of Wn as polynomial
functions of sines and cosines which enter the parametrization of orthogonal matrices. For
example, instead of wn = Ond

1
n−1wn−1 we could take wn = OnWn−1, where Wn−1 is at its

turn given by a formula such as (10) and so on.

Remark 2. If in our formula for An ∈ O(n) we factorize all the two-dimensional rotations
Ji,i+1 as (

cos θ −sin θ

sin θ cos θ

)
=

(
1 −tan θ/2

0 1

)(
1 0

sin θ 1

)(
1 −tan θ/2

0 1

)

we obtain a factorization of rotations similar to that found by Strang (1997) and Toffoli (1997).

Examples. An element A4 ∈ U(4) factors as

A4 = d4O4d
1
3O1

3d
2
2O2

2d
3
1

where d4 = (eiϕ1, eiϕ2 , eiϕ3 , eiϕ4), d1
3 = (1, eiϕ5 , eiϕ6 , eiϕ7), d2

2 = (1, 1, eiϕ8, eiϕ9), d3
1 =

(1, 1, 1, eiϕ10), and O4,O1
3 and O2

2 are the following matrices:

O4 =




cos θ1 −sin θ1 0 0

sin θ1 cos θ2 cos θ1 cos θ2 −sin θ2 0

sin θ1 sin θ2 cos θ3 cos θ1 sin θ2 cos θ3 cos θ2 cos θ3 −sin θ3

sin θ1 sin θ2 sin θ3 cos θ1 sin θ2 sin θ3 cos θ2 sin θ3 cos θ3




O1
3 =




1 0 0 0
0 cos θ4 −sin θ4 0

0 sin θ4 cos θ5 cos θ4 cos θ5 −sin θ5

0 sin θ4 sin θ5 cos θ4 sin θ5 cos θ5




O2
2 =




1 0 0 0

0 1 0 0

0 0 cos θ6 −sin θ6

0 0 sin θ6 cos θ6


 .

Formula (8) for O4 takes the form

O4 = J3,4 · J2,3 · J1,2

=




1 0 0 0

0 1 0 0

0 0 cos θ3 −sin θ3

0 0 sin θ3 cos θ3







1 0 0 0

0 cos θ2 −sin θ2 0

0 sin θ2 cos θ2 0

0 0 0 1







cos θ1 −sin θ1 0 0

sin θ1 cos θ1 0 0

0 0 1 0

0 0 0 1


 .
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The Weyl form of a 2 × 2 unitary matrix is

W2 = w∗
2d2w2 = d1

1
∗Ot

2d2O2d
1
1

=
(

eiϕ1 cos2 θ + eiϕ2 sin2 θ cos θ sin θ eiϕ3(eiϕ1 − eiϕ2)

cos θ sin θ eiϕ3(eiϕ1 − eiϕ2) eiϕ2 cos2 θ + eiϕ1 sin2 θ

)

where d2 = (eiϕ1, eiϕ2), d1
1 = (1, eiϕ3) and O2 is the two-dimensional rotation matrix.

4. Concluding remarks

In this paper we proposed a new factorization of unitary matrices which can be useful in
many domains of mathematical and theoretical physics. We suggest it to become the standard
factorization since its form is given in terms of two-dimensional rotations and diagonal phase
matrices and taking into account its recursive nature it will be more appropriate to design and
implement software packages necessary for solving definite problems.

To see how the recursive property helps let us consider the simplest problem of the
Laplace–Beltrami operator on the complex sphere S2n−1. We start with the unit vector |vn〉 =
(eiϕ1 cos θ1, . . . , eiϕn sin θ1 · · · sin θn−1) ∈ S2n−1 and write it as

|vn〉 = eiϕ1 cos θ1|1〉 + sin θ1|vn−1〉
where |1〉 = (1, 0, . . . , 0) and it is orthogonal to |vn−1〉. We compute the Lagrangian

Ln = 1

2

n∑
i=1

(v̇n)i( ¯̇vn)i = 1

2
〈v̇n|v̇n〉

where dot denotes the total derivative with respect to ‘time’ and bar denotes the complex
conjugation, and we obtain

Ln = θ̇2
1 + ϕ̇2

1 cos2 θ1 + sin2 θ1Ln−1

and by iterating it one gets the Lagrangian and afterwards the Laplace operator that has the
form

� =
n−1∑
k=1

1

sin2 θ1 · · · sin2 θk−1 cos θk sin2(n−k)−1 θk

∂

∂θk

(
cos θk sin2(n−k)−1 θk

∂

∂θk

)

+
n−1∑
k=1

1

sin2 θ1 · · · sin2 θk−1 cos2 θk

∂2

∂ϕ2
k

+
1

sin2 θ1 · · · sin2 θn−1

∂2

∂ϕ2
n

.

By using relation (8) written now in the form

On = O1
n−1J1,2

and doing a similar calculation, we obtain the Laplace operator on the variety On

� =
n−1∑
k=1

∂2

∂θ2
k

whose form shows that on this variety the Laplacian is diagonal. On the SO(n) group the
problem is more complicated since there are correlations between terms arising from different
vectors parametrizing it, but within each vector the Laplacian is diagonal. We did not find the
formula for arbitrary n but solved only the cases SO(3) and SO(4). As concerns the unitary
group U(n) the same problem appears even more complicated because of the phases and we
solved only the U(3) case. A complete treatment of such problems will be given elsewhere.
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As concerns the complex Hadamard matrices by using our formalism we got for n = 6
three new nonequivalent matrices, the most interesting being

1√
6




1 1 1 1 1 1

1 −1 i −i −i i

1 i −1 eit −eit −i

1 −i −e−it −1 i e−it

1 −i e−it i −1 −e−it

1 i −i −eit eit −1




which depends on an arbitrary phase (Diţă 2002).
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Diţă P 1994 On the parametrisation of unitary matrices by the moduli of their elements Commun. Math. Phys. 159

581–5
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